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On the flow due to a rotating disk 
By EDWARD R. BENTON? 

National Center for Atmospheric Research, Boulder, Colorado 

(Received 14 May 1965 and in revised form 15 August 1965) 

The von K k m h  (1921) rotating disk problem is extended to the case of flow 
started impulsively from rest; also, the steady-state problem is solved to a 
higher degree of accuracy than previously by a simple analytical-numerical 
method which avoids the matching difficulties in Cochran’s (1934) well-known 
solution. Exact representations of the non-steady velocity field and pressure are 
given by suitable power-series expansions in the angle of rotation, Qt,  with 
coefficients that are functions of a similarity variable. The first four equations 
for velocity coefficient functions are solved exactly in closed form, and the next 
six by numerical integration. This gives four terms in the series for the primary 
flow and three terms in each series for the secondary flow. 

The results indicate that the asymptotic steady state is approached after about 
2 radians of the disk’s motion and that it can be approximately obtained from the 
initial-value, time-dependent analysis. Furthermore, the non-steady flow has 
three phases, the first two of which are accurately and fully described with the 
terms computed. During the first-half radian (phase l), the velocity field is 
essentially similar in time, with boundary-layer thickening the only significant 
effect. For 0.5 5 SLt 5 1-5 (phase 2), boundary-layer growth continues a t  a 
slower rate, but simultaneously the velocity profiles adjust towards the shape of 
the ultimate steady-state profiles. At about SLt = 1.5, some flow quantities over- 
shoot the steady-state values by small amounts. In  analogy with the ‘ Greenspan- 
Howard problem’ (1963) it is believed that the third phase (Qt  > 1.5) consists of 
a small amplitude decaying oscillation about the steady-state solution. 

1. Introduction 
The direct analytical approach for most steady-state flow problems is especially 

difficult because of the essential non-linearity of the governing differential 
equations in this case. Recourse is nearly always made to approximate methods, 
which are only satisfactory in varying degrees. A potentially powerful alternative 
approach is the indirect one of obtaining steady-state solutions from time- 
dependent initial-value problems. This is, of course, a more natural approach 
since, physically, steady-state ff ow does not occur spontaneously, but is rather 
approached as the asymptotic development of a time-dependent process. 

While this simple idea is not particularly new, it has only recently begun to 
receive careful consideration. Crocco (1965) has given an articulate description 
of the basis for the idea, and used it to calculate the mixed supersonic-subsonic 
flow in a divergent duct. Also, Bohachevsky, Rubin & Mates (1965) have com- 
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puted some non-equilibrium flows with detached shocks, by extending in time 
suitable non-steady flows. The present paper is an attempt to solve a boundary- 
layer problem from this viewpoint. 

There is, of course, no apriori guarantee that the non-steady flow problem will 
avoid non-linear difficulties; in fact, generally, it will not (the compressible flow 
problems cited above are both non-linear). However, even in that case, non- 
steady analysis is still attractive because relatively advanced numerical methods 
exist for the solution of non-linear initial-value problems (e.g. Richtmyer 1957). 
On the other hand, the particular time-dependent, initial-value problem studied 
here, namely, impulsively started boundary-layer flow for an infinite rotating 
disk, gives rise to linear differential equations, although the forcing functions are 
non-linear. Moreover, there is evidence that linear equations can arise in more 
complicated impulsively started boundary-layer problems (Benton 1965). 

A major purpose of the present paper, then, is to determine, by reference to an 
admittedly simple example, whether or not the steady-state boundary-layer 
problem can actually be approached by way of initial-value analysis and, if so, 
what sort of difficulties are encountered. In  mathematical terms, we seek the rate 
of convergence of an impulsively started boundary layer to its asymptotic steady 
state. The question is important because even though there is no conceptual 
difficulty in approaching the steady state via the initial-value method, the con- 
vergence may well be so slow that, analytically, the method is as unwieldy as the 
direct steady-state approach. 

The von Kkm&n rotating disk problem has been chosen for this study because 
its velocity field is fully three dimensional (and therefore somewhat general) and 
the steady-state solution can be obtained very accurately. Also, it reduces to a 
problem in one variable, which simplifies the details of the analysis very con- 
siderably. A special feature of the problem is the well-known fact that the 
Navier-Stokes equations become identical to the boundary-layer equations for 
this geometry. 

A secondary motivation of the work is to develop a formally exact solution of 
the time-dependent Navier-Stokes equations and to examine the resulting 
transient motion. The solution is exact in the sense implied by Schlichting (1960) : 
all terms in the Navier-Stokes equations either vanish identically or are accounted 
for; none are neglected apriori. Formal power-series expansions in Qt are intro- 
duced for the velocity field and pressure and substituted into the full Navier- 
Stokes equations. When the combined coefficient of each power of SZt is equated to 
zero, a relatively simple hierarchy of equations emerges. They are linear ordinary 
differential equations with variable coefficients and non-linear forcing functions. 
Since the equations are uncoupled, they can, in principle, be solved exactly in 
closed form. However, the complexity of the forcing functions increases rapidly 
with order in the sequence, so only the first four equations are solved exactly.The 
next six are solved by writing the solutions exactly in integral form, and then 
evaluating the integrals numerically. At least three terms in each of the series for 
the velocity field are computed. This enables us to give a fairly complete descrip- 
tion of the transient flow and establish to what extent the steady state can be 
obtained from the initial-value analysis. 
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2. Basic equations 

satisfies the continuity and Navier-Stokes equations in the form 
Non-steady, axially-symmetric, incompressible flow of a homogeneous fluid 

(ru),+ (rw), = 0, (1) 

(2) 

(3) 

(4) 

ut + uu, + wu, - r--1v2 = - p-lp, + v[u, + (r-lu), + uJ, 
v, + uv, + r-luv + WV, = ~[v, + (r-lv), + vZ2], 

w, + uw, + ww, = - p-lp2 + v[w, + r-lw, + w,,]. 
Here u, v, w are velocity components in the directions of increasing r,  8, x ,  
respectively, in a non-rotating cylindrical co-ordinate system; p is the pressure, 
p the fluid density and v the kinematic viscosity. Appropriateinitial and boundary 
conditions for the flow induced by an infinite disk (z = 0) which is started im- 
pulsively (at t = 0) into steady rotation with constant angular velocity, Q, are 

(5) 

given by 

i at t = 0 :  u = v = w = O ,  
at z = O :  u = w = O ,  v = r Q ,  
as x+m: u,v-+O. 

Before proceeding to the non-steady analysis, we present, briefly, an improved 
steady-state solution. 

3. Improved steady-state solution 
Von K&rm&n’s (1921) original momentum-integral solution to this problem 

contained errors which were pointed out by Cochran (1934). Cochran reformu- 
lated the fifth-order system as a singular-perturbation problem. A power-series 
solution was found satisfying boundary conditions at the disk. The asymptotic 
expansion, satisfying boundary conditions at  infinity, was shown to consist of 
power series of exponential functions. These two solutions were joined together 
at  a suitable intermediate point of overlap. The joining process required evalu- 
ating a set of five parameters so as to best satisfy five patching conditions. It is 
remarkable that Cochran was able to obtain as accurate a solution as he did, 
working without a high-speed computer; yet, two of the functions to be joined 
mismatch at his patching point by errors slightly over 1 %. Therefore, inaccuracies 
of that same order may be present throughout his solution. Later in this paper it 
becomes necessary to know the steady-state solution with greater precision. 
A highly accurate solution is obtained by a method differing only in trivial 
respects from one used by Fettis (1955). The essential point is that the asymptotic 
expansion can be used to describe the entire flow field. In  this way the joining 
difficulties of Cochran’s procedure are avoided; furthermore, the new solution is 
analytically and numerically more convenient for such things as stability 
investigations. 

The von K&rm&n functional form for the velocity field and pressure is 
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With these definitions, equations (1)-(4) take on the well-known form 

H ' + 2 P  = 0, 

P"-HF'-F'+G2 = 0, 

G" - HG'- 2BG = 0, 

P' - HH' + H" = 0. (10)  

G ( 0 )  = 1, P(0) = H ( 0 )  = G(w) = p(00) = 0. (11) 

If Po is the dimensionless pressure at x = 0, then integration of equation (10) gives 

P(<) = Po+QH2-H'. (12)  

The boundary conditions are 

Substitution of the continuity equation (7) into (8) and (9) leads to the following 
alternative boundary-value problem : 

G" - HG' + H'G = 0, (13) 

(14) 

(15) 

H(0O) = - c  (c> 0). (16)  

H"' - HH" +- 4H'H' - 2G2 = 0, 

G(O) = 1,  H ( 0 )  = H'(0) = G(oo) = H ' ( ~ o )  = 0. 

As 6 -+ co, there is a finite flow towards the disk, and following Cochran (1934) 
we define c by 

Cochran indicated that a formal asymptotic expansion (for large <) of the system 
of equations (13)-( 15) is a power series in exp ( - cc), i.e. 

(17) } 
G N A,  e+c + A,  e-2cc + A,  e-,4 + . . . , 
H N -c+BB,e-c5+B2e-2c~+B,e-3C5+ .... 

This suggests making the change of variable 

= e-cc. (18) 

G(<) = c2g(A), H ( c )  = -c+ch(h),  (19) 

hg" + hg' - h'g = 0, (20)  

Ash"' + 2 A 2 h  + h2hh + hhh' - &h2h'h' + 2g2 = 0, (21)  

c2g(l) = 1, g(0) = h(0) = h'(1) = 0, h(1)  = 1. (22)  

If G(<) and H(LJ are redefined in terms of h as follows, 

then equations (13), (14) become 

subject to boundary conditions 

In  these equations primes indicate differentiation with respect to A. The first 
boundary condition in equation (22)  gives c once g(h) has been found. The system 
of equations (20) ,  (21) can easily be solved completely by power-series expansions 
in A. One important advantage of the change of variable is that the region of 
interest is 0 6 h 6 1 rather than 0 6 6 6 00; so the power series in h can be 
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expected to converge more rapidly than one in 5. With the satisfaction of the 
boundary conditions at h = 0 (i.e. 5 + co), the power series for g and h are 

g ( h )  = a,h+a2h2+a3h3+ ... A I: aihi, 
i= 1 

( 2 3 )  

n 

i=1 
h(h) = b,h+b2h2+bgh3+ ... A bihi. ( 2 4 )  

Recursion relations for the coefficients ai and bi are found by substituting the 
truncated power series into the differential equations (20 ) ,  ( 2 1 )  and equating 
the coefficient of the general term to  zero. The results can be written 

The first few derived coefficients are 

a2 = 0, b2 = - Q(b:+ 4 4 ) ,  

(x.3 = &(a,b2-Gd2b1), b3 = -&(3b,b2+4Ch,a,), 1 ( 2 7 )  
u4 = &(al b, - a3 bl),  b, = - &(7bl b, + 4a, a3 + 2b; + 4ai1.1 

Clearly, all of the coefficients can be found exactly as functions of the two leading 
coefficients, a,,b,, which must be chosen so as to satisfy the two remaining 
boundary conditions [h( 1) = 1, h’( 1) = 01. 

Initial guesses for a, and b, were obtained from Cochran’s solution. The recur- 
sion relations, equations (25 ) ,  (26), were then used to compute a2, a3, .. ., a50, b,, 
b,, . . . , b50. Higher-order coefficients can easily be found, but fifty is more than 
sufficient for the present purpose. The values of h( 1) and h‘( 1) were next calcu- 
latedfrom the truncated power series and compared with the desired values (1 and 
0, respectively). Then a search process was set up so that a, and b, would be 
progressively altered by small amounts until the boundary conditions a t  h = 1 
were satisfied with sufficient accuracy. 

All computations were made in double precision, thereby ensuring five or six 
significant digits of accuracy. No more than four digits are presented in the 
results. The series converge rapidly for two reasons. First, the range of interest is 
bounded above by h = 1. Secondly, the series for h turns out to be an alternating 
series with coefficients whose magnitudes decrease monotonically. The series for 
g is almost an alternating series (only a,, and have the same sign instead of 
alternating in sign) and, except for two coefficients in the first 50,  the magnitudes 
decrease monotonically. 

The final case computed in detail corresponds to the following set of constants: 

a, = 1.53678, b, = 2.36449, 

for which 1 ( 2 8 )  
c = 0.88447, h(1) = 0’9999988, h’(1) = -0.0000037. 

50 Fluid Mech. 24 
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For comparison, Cochran's value of cis 0.886 and he finds the asymptotic pressure, 
P(.o)-P, = $c2, to be 0-3925, whereas the present value is 0-3911. Retaining 
fewer terms, Fettis obtained c = 0.8840 which gives P(m) - Po = 0-3907. The 
boundary-layer displacement thickness required later is given by 

To save space, only the first 25 coefficients are tabulated to four significant digits, 
in table 1. The last two coefficients computed were as,, = -2.946 x 10-l2, 
b,, = - 7.583 x 10-13. The functions originally tabulated by Cochran and recalcu- 
lated here are presented in table 2. With one exception, the present results, if 

i a, bi 

0 0 0 
1 1.537 ( 0) 2.364 ( 0) 
2 0 -1.880 ( 0) 
3 - 4.814 ( -  1) 7'408 ( -  1) 
4 3.795 ( -  1) - 3.410 ( - 1) 
5 - 2.584 ( - 1) 1.790 ( -  1) 
6 1.657 ( -  1) - 9.957 ( - 2) 
7 - 1'023 ( -  1) 5.675 ( - 2) 
8 6.128 ( -  2) - 3.262 ( - 2) 
9 - 3.572 ( - 2) 1'877 ( -  2) 

10 2.032 ( -  2) - 1.078 ( -  2) 
11 - 1.131 (-2) 6.161 (-3) 
12 6.163(-3) - 3.508 ( - 3) 
13 - 3.292 ( -  3) 1.989 ( - 3) 
14 1.724 ( -  3) - 1.123 ( - 3) 
15 - 8'846 ( - 4) 6.320 (-4) 
16 4.438 ( - 4) - 3.547 ( - 4) 

18 1.028 ( - 4) - 1.109 ( -  4) 
17 - 2.170 ( -  4) 1.986 ( - 4) 

19 - 4.666 ( - 5 )  6.187 ( -  5) 
20 1.990 ( -  5 )  - 3.446 ( - 5 )  
21 - 7.634 ( - 6) 1.918 ( -  5) 
22 2.312 ( - 6) - 1'066 ( -  5) 
23 - 2'063 ( - 7) 5.925 ( -  6) 
24 - 3.291 ( - 6) - 4.839 ( - 7)  
25 6.996 ( -  7)  1.827 (-6) 

TABLE 1.  The first twenty-five coefficients in the series for the steady-state flow, with 
exponents of 10 in parentheses 

rounded to three places, differ from Cochran's only in the third digit after the 
decimal point. The largest proportional error occurs at the largest value of 6, where, 
for example, Cochran obtains G(4.4) = 0.024 and the present solution gives 
G(4.4) = 0.00245, a difference of 2 %. Cochran's value for G(l), which is 0.468, 
must be a misprint, since the more accurate value is 0.477. 
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5 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1-5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2-5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4-0 
4.1 
4.2 
4.3 
4.4 

cg 

F 
0 
0.0462 
0.0836 
0.1133 
0.1364 
0.1536 
0.1660 
0.1742 
0.1789 
0.1807 
0.1802 
0.1777 
0.1737 
0.1686 
0.1625 
0.1559 
0.1487 
0.1414 
0-1338 
0.1263 
0.1189 
0-1115 
0.1045 
0.0976 
0.0910 
0.0848 
0-0788 
0-0732 
0.0678 
0.0628 
0.0681 
0.0537 
0.0496 
0.0458 
0.0422 
0.0389 
0.0358 
0.0330 
0.0304 
0.0279 
0.0257 
0.0236 
0.0217 
0,0199 
0.0183 

0 

ct 
1~0000 
0.9386 
0.8780 
0.8190 
0.7621 
0.7076 
0.6557 
0.6067 
0.5605 
0.5171 
0.4766 
0.4389 
0.4038 
0.3712 
0.341 1 
0.3132 
0.2875 
0.2638 
0.2419 
0.2218 
0.2033 
0.1864 
0.1708 
0.1565 
0.1433 
01313 
01202 
0.1101 
0.1008 
0.0923 
0.0845 
0.0774 
0.0708 
0.0649 
0.0594 
0.0544 
0.0498 
0.0456 
0.0417 
0.0382 
0.0349 
0.0320 
0.0293 
0.0268 
0.0245 

0 

H 

- 0'0048 
- 0.0179 
- 0.0377 
- 0.0628 
- 0.0919 
- 0.1239 
-0.1580 
-0.1934 
- 0.2294 
- 0.2655 
- 0.3013 
- 0.3365 
- 0.3707 
- 0'4038 
- 0'4357 
- 0.4661 
- 0.4952 
- 0.5227 
- 0.5487 
- 0.5732 
- 0.5962 
-0.6178 
- 0.6380 
- 0-6569 
- 0.6745 
- 0.6908 
- 0.7060 
- 0.7201 
- 0.7332 
- 0.7452 
- 0.7564 
- 0.7668 
- 0.7763 
- 0.7851 
- 0.7932 
- 0.8007 
- 0.8075 
- 0.8139 
- 0'8197 
- 0.8251 
- 0.8300 
- 0.8345 
- 0.8387 
- 0.8425 

- 0.8845 

0 

F' 

0.5102 
0.4163 
0.3380 
0.2620 
0.1999 
0.1467 
0.1015 
0.0635 
0.0317 
0.0056 

- 0.0157 
- 0'0327 
- 0.0461 
- 0.0564 
- 0'0640 
- 0.0693 
- 0.0728 
- 0'0747 
- 0.0754 
- 0.0751 
- 0.0739 
- 0'0721 
- 0.0698 
- 0'0671 
- 0.0643 
- 0.0612 
- 0.0580 
- 0.0548 
- 0.0517 
- 0.0485 
- 0.0455 
- 0,0425 
- 0.0397 
- 0.0369 
- 0.0343 
- 0'0319 
- 0'0296 
- 0.0274 
- 0.0253 
- 0'0234 
- 0'0216 
- 0.0200 
- 0.0184 
- 0.0170 
- 0'0156 

0 

G' 
- 0.6159 
-0.6112 
- 0.5987 
- 0.5803 
- 0.5577 
- 0.5321 
- 0.5047 
- 0.4764 
- 0.4476 
- 0.4191 
- 0.391 1 
- 0.3641 
- 0.3381 
- 0.3133 
- 0.2898 
- 0.2677 
- 0.2470 
- 0.2276 
- 0.2095 
- 0.1927 
-0.1771 
-0.1627 
-0.1494 
- 0'1371 
- 0.1258 
-0.1153 
- 0.1057 
- 0'0969 
- 0.0888 
- 0.0814 
- 0.0745 
- 0.0683 
- 0.0625 
- 0.0573 
- 0'0524 
- 0.0480 
- 0.0440 
- 0.0403 
- 0.0369 
- 0.0337 
- 0.0309 
- 0'0283 
- 0.0259 
- 0.0237 
- 0'0217 

0 

P-P,  
0 
0.0925 
0.1674 
0.2274 
0.2747 
0.3115 
0.3396 
0.3608 
0.3764 
0-3877 
0.3955 
0.4008 
0.4041 
0.4059 
0.4066 
0.4066 
0.4061 
0.4053 
0.4043 
0.403 1 
0.4020 
0.4008 
0.3998 
0.3987 
0.3978 
0-3970 
0.3962 
0.3955 
0.3949 
0.3944 
0-3939 
0.3935 
0.3932 
0.3929 
0.3926 
0.3924 
0.3922 
0,3921 
0.3919 
0.3918 
0.3917 
0-3916 
0.3915 
0.3915 
0.3914 

0.3911 

TABLE 2. The steady-state velocity field, its derivatives, and the pressure as functions of j 

4. The impulsively started initial-value problem 
In part of the Gottingen thesis, Thiriot (1  940) made a start on exactly this 

problem. He expanded u and v in series involving powers of the angle of disk 
rotation 

(p 5 f i t ,  (29) 
50-2 
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with coefficients that were functions of the familiar similarity variable, 

E z /2 (v t ) k  (30) 

Noting that the steady-state von KArm6n radial dependence is equally valid for 
non-steady flow, and generalizing Thiriot’s expansion scheme to include all 
three velocity components and the pressure, we write 

(31) 

(32) 

(33) 

(34) 

U(T,  = .Q$V,(a) +f2(7) 5J2 +f3(7) $5, $- . ..I, 
v(r, 2, t )  = T Q b l ( 7 )  + 92(7) $, + 93(7) $4 + 94(7) P + * * ’It 

w(z, t )  = - 4(vQ)4 $%(q) + h,(7) p +  h3(q) $4+.  . .I, 
P(Gt )  = 2PQ$b1(7) +P2(7) $, +P3(7) $,+ **.I. 

Before explaining the reasons for choosing these series, we note that Thiriot 
(1940) foundf,, g,, and h, exactly in closed form, and g, by numerical integration. 
Unfortunately, a, numerical error in his equation that determines g2 vitiates his 
results for that function. Subsequently, Nigam (1951), apparently unaware of 
Thiriot’s paper (in German), treated the problem and found fl, gl, h, and p 1  
exactly in closed form. In  the present paper, g2 is also found exactly in closed 
form, andf2,,f3, g,, g,, h,, and h3 are calculated by numerical integration (the place 
of truncation being determined by limitations of machine storage). 

We can now explain the reasons for our choice of the above series, a matter not 
discussed in Thiriot’s paper. Since this flow is simply the rotational analogue of 
the Rayleigh problem, we anticipate a similar solution for v as a first approxima- 
tion, whence vl(r, z, t )  = rQg, (7) where q = x/2(vt)4. In  fact, it will be seen that 
gl(q) for this problem is identical with the solution of the Rayleigh problem (e.g. 
Schlichting 1960). The crucial difference between the two flows is, of course, that 
here a v component of velocity is circumferential not rectilinear, so that it 
produces centrifugal forces, v2/r .  These accelerate a radial secondary flow, u, 
starting from rest, which for small QZt must be of order rQ2t = rQ$ (see equation 
( 2 ) ) .  Thus, ul(r, z, t )  = rQ$f1(7). Finally, because of continuity, radial outflow 
must be accompanied by axial inflow. Substitution of the first approximation to 
u into the continuity equation (1) shows that wl(x, t )  = - 4(vQ)fr @h,(q), as in 
equation (33). The form ofpl then follows from equation (4). 

It is now evident that similarity is imbedded as the first term in each series 
in the sense that first approximations f,, g,, h, and pl are functions of only one 
variable 7, with time not appearing explicitly. Departure from similarity is due 
entirely to the non-linear terms in the differential equations (recall that the 
Rayleigh problem, which exhibits complete similarity for all time, is fully linear). 
This departure is accounted for by higher-order terms in the series; these proceed 
in powers of $, rather than g5 because the non-linearity is a quadratic one. This 
feature is fortunate because it prolongs in time the validity of each approximation. 
Note also that the generation of the velocity field from rest, as described above, 
proceeds in an ordered sequence, first v, then u, and finally w (i.e. equations 
(31)-(33) show that for sufficiently small $, Iv1 > u1 > 1 ~ 1 ) .  This property leads 
to linear uncoupled equations for the functions f, g, h. The central purpose of the 
present paper can now be stated as the examination of the convergence properties 
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of the above series. If the evolution time for this flow turns out to be of order Q-1 

then we can anticipate that the chosen expansion will converge rapidly to the 
steady-state solution. 

Substitution of the series expansions into the full continuity and Navier-Stokes 
equations (1)-(4) leads to the following hierarchy of equations for g l ,  ..., g,, 
fi, *. . , f3 ,h1,  *-*,h3,p1, ***7p3: 

g;+ 27s; = 0, (35)  

(36) 

h; =f1, (37)  

(38)  

(39)  

(40) 

h; = f 2 ,  (41)  

(42)  

(43)  

(44)  

h; = f 3 ,  (45)  

(46)  

(47)  

f’l+ Zyj; - 4j1 = - 4g?, 

131 = - h; - 2yht; + 6h1, 

g; + 2rg; - 8gz = 8fl g1- 89; hl, 

& + 2rf - 12fZ = - 8gIg2 + 4f :  - 8f i h1, 

ph = -Id; - 2yh; + 14h2 - 8h1 hi, 

g ;  + 27s; - 1% = 8fz q1- 8s; hz + 8fl Q2 - sg;  hl, 

fl+ 27.; - 20.3 = - 4gz - 85’1 5’3 Sfif, - 8f& - 8.; h p  

p ;  = - h; - 2yh; + 22h3 - 8(h1 h2)’, 

d+ 2?d-2%4 = s (g3f1-g;  hl+92f,-g~h2fglf3-9;h3). 

The initial and boundary conditions are 

S l ( 0 )  = 1, g,(m) = 0, g,+,(O) = g ,+l (a )  = 0, 

fi(0) = fi(W) = h,(O) = 0,  } (48) 

pl(0) = p o  = const., P ~ + ~ ( O )  = 0, 

for i = 1,2,3.  These linear ordinary differential equations are uncoupled. They 
can be solved sequentially in the order written, for at  any point in the sequence 
the forcing function consists only of functions previously determined. The 
equations for the h and p functions require only a single quadrature. The other 
equations, for the g and f functions, are not quite so straightforward since they 
have variable coefficients and non-linear forcing functions. Still, all of these 
latter equations are of the form 

Fi+2rFL-2kFk = F k  (k=0,2,4,6,  ..., 12), (49)  

whereFo(r) = g l ( r ) ,  4 ( y )  = fl(rl), U r )  = g 2 ( y ) ,  etc., and %(r) is the appropriate 
forcing function. 

As previously anticipated, the solution of equation (35) for the boundary 
conditions of equation (48)  is identical t o  the solution of the Rayleigh problem 
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Exact closed form solutions for ti, h,, and p l  (equations (36)-(38)) are given 
correctly by Nigam (1951) as 

fl(7) = Zn-l[( 1 + 2y2) erfcr - 2n-$7 e-v'] - 2(7 erfc 7 - n-*e-v')2, (51) 

hl(7) = 2(3n)-I [(37 + 2r3)  erfc 7 - 2n-4( 1 + 7,) e-v'] - gv(7 erfc 7 - n-4 e-v')2 

- fn-fr e-7' erfc 7 + g(2/n)+ erfc (247) + fn-4(2n-1- 24 + I), 

+ 4rr-$(Zn-l- 26 + 1) 7 + (2 n-l - 1 + p,,). 

(52) 

(53) 

pl(7) = (1 + 2r2) erfc2 7 - 4n-!7 e-7' erfc 7 - 2n-l e-2v' + 4(2/n)* 7 erfc (247) 

These first terms in the series represent valid approximations to the flow only 
during the initial stages of motion. They cannot reveal much about the duration 
or later development of the transient (including the departure from similarity), 
so it is desirable to obtain higher-order terms. Equations (35)-(47) and (50)-(53) 
indicate that the complexity of the functions will increase rapidly with order in 
the sequence. Numerical solution is demanded, but even then the number of 
higher-order terms that can be calculated accurately is set by limitations of 
machine storage. The CDC-3600 available for this study could accommodate up 
to six functions comfortably. These were chosen so that the last function com- 
puted would be the fourth approximation to the primary flow, the component of 
chief interest. As a result, it became necessary to find g, exactly in closed form, 
and also to restrict interest to the velocity field, neglecting pressure. Finding g2 
is a long and tedious process, but it involves a straightforward application of a 
method due to Goldstein & Rosenhead (1936). The resulting solution to equation 
(39), with equations (50-52) substituted into the forcing function, is 

g2(7) = [&+(62-27,/3)/9On- 16/15n2][(3+ 1272+474)erfcq 

-2n-*(57+273)e-v'] -&(3+ 12q2+28q4)erfc37 

- n-l(l- 472- 474) erfc27 - &4537 + 5473) e-3q2 

+ (16/3n2) (1 + 7,) c 2 q 2 -  (16/15n) (Zn-l- 2*+ 1) e-v' 

+ $n-*(y + 4v3) e-7' erfc2 7 - &-*( 157 + 1 4 ~ ~ )  e-v'erfc 7 

- 67~-~7~e-~7'erfc7- (16,/2/15n) e-T2erfc (287) 

+(3d3/1On) (3+ 1272+474)erfc(3*7). (54) 

Accurate solutions for the remaining velocity functions f , ,  h,, g3, f3, 72, and g4 
are obtained by numerical integration. In  this set, h, and h3 are found by a single 
quadrature, using the trapezoidal rule. The other functions are determined by 
equation (49), the appropriate boundary conditions being 

&(O) = Pk(co) = (55) 

In  order to eliminate truncation error, equation (49) is not approximated by a 
finite difference equation. Instead, the exact solution is written in integral form 
by the method of variation of parameters and then the integrals are evaluated 
numerically. This requires first finding the two linearly independent solutions of 
the homogeneous version of equation (49). One of these, say P$E)(r) is simply a 



On theJlow due to a rotating disk 791 

polynomial in r2 of degree +k. When normalized so that Fg)(O) = 1, it can be 
written as (Thiriot 1940) 

The first homogeneous solution to equation (40) is 

fJl)(q) = Pa]-)(?) = &( 15 + 90r2 + 60r4+ 8 ~ ~ ) .  (57) 

Since the polynomial solution diverges at infinity, it  can only contribute to the 
particular integral. 

Thiriot (1940) gives an expression for the second homogeneous solution to 
equation (49) but a more compact form is 

_- J/ .. . J erfc (dr)k .  
2 9 k k !  

1 . 3 . 5  ...( k -  1)  
Ft’(7)  = 

The normalization is againFt’(0) = 1.  This solution decays to zero at infinity. The 
multiple integral can easily be handled (by integration by parts). For example, 

= A[( 15 + 90r2 + 60r4 + 8 f )  erfc 7 - 7~-*(667 + 56r3 + 8q5) e-7’1. (59) 

The Wronskian of Fg)(r]) and Ft ) (q ) ,  also needed for the variation-of-parameters 
solution, is defined by 

%(r) = E ) ( r )  dFIE-’(r)/dr - FP(7) dPt)(r)/dr. (60) 

For equation (49) it  has the simple form 

W,(7/) = cke-q (61) 
where c k  is a constant. 

can now be written as 
The exact solution of equation (49) for the boundary conditions of equation (55) 

The first term is the direct contribution of the second homogeneous solution, 
while the last two terms constitute the particular integral. The integrals appearing 
here were evaluated numerically, using Simpson’s rule, but F f ) ( r ) ,  Fg)(q), and 
W,(r) were supplied in exact form. Those parts of Sk(~)  that were not known 
exactly in analytic form had been stored numerically on tape during previous 
computations. In  equations (44) and (47) the forcing functions contain terms 
involving the derivatives of functions only known numerically (f h, gi, respec- 
tively). To maximize accuracy, these derivatives were not obtained by finite 
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differencing, but rather by using the exact expression for FL(r), which is (see 
equation (62)) 

In this equation, the differentiated terms are known exactly in analytic closed 
form and the integrals are the same as those that appear in the expression for 
F'(7). Thus, there is no loss in accuracy in passing from F,(y) to Fi(7). 

An upper limit of infinity in an integral was replaced by 7 = 4. Greater values 
were found to change the results negligibly. The step size used in numerical 
integrations was A x  = 0.00125 for f2 and h,; 0.0025 for g,; 0.005 forf, and h,; and 
0.01 for g,. 

5. Results and discussion 
The convergence of the series for the primaryflow, equation (32), is conveniently 

discussed by introducing the two most important gross features of the flow, 
namely the boundary-layer displacement thickness, 6*(t), and the viscous 
torque on the disk, T(t). As is well-known, these are proportional, respectively, 
to the integral and derivative of the primary flow velocity profile. With appro- 
priate non-dimensionalization, we write 

A dl $4 +a, #'+ + d, $S + d, $9, 

di = 2 gi(7)dr (i= 1,2 ,3 ,4) .  1: where 

If T is the viscous torque on that portion of the infinite disk between T = 0 and 
T = a, and if R = a2Q/v is the Reynolds number, then the torque coefficient for a 
disk wetted on both sides, is 

= - R-4 $-B[g;(O) + g;(O) + &(O) $4 + gi(0) $6 + . . .] 

where k, = - gi(0) (i = 1,2 ,3 ,4) .  

(65) 
s R-*[k, $-* + k, @ + k3 $$ + k, $GI, 

The minus sign in the definition of C, makes it positive since the viscous torque 
opposes the motion (i.e. T < 0). The torque is singular at  t = 0 because the flow 
was started impulsively. 

The numerical values of the coefficients di, kc are 

dl = 1.128, d, = -0.09378, d, = 0.01256, d4 = -0.001616, 

k, = 1.128, k, = 0.1884, k3 = -0.01759, k, = 0.001797. 
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This shows that, to the order calculated, the di sequence is an alternating sequence 
with monotonically decreasing magnitudes, thereby indicating convergence. 
Furthermore, these coefficients decrease rapidly (by about one order of magnitude 
per step) so the trend towards convergence is also rapid. Similar remarks apply 
to the sequence ki, except that the first coefficient is the same sign as k,, rather 
than alternating. This is due to the non-homogeneous boundary condition on 
SI(7yI). 

2.0 I I I I 1 I I I I 

- Order of approximation 

1.5 - 
von K & m h  steady-state 
value = 1.27 

ricl 
9 . s. 
x 1.0 

I I  

- 
u3 

- 't: 

- 

- 

" 
n 0.5 1.0 1.5 2.0 2.5 

4 = at (rad.) 

FIGURE 1. Non-dimensional boundary-layer displacement thickness ws angle of rotation. 

The growth in time of the boundary -layer displacement thickness and viscous 
torque are shown in figures 1 and 2 .  The curve for each approximation is the 
result with only the indicated number of terms in the series included. This allows 
us to define the range of validity for each approximation by observing where the 
next higher approximation begins to depart significantly from it (say, by a few 
per cent). In  this way, it is seen that the first approximation, corresponding to a 
similar solution, extends through about the first half-radian of the disk's motion. 
The second and third approximations appear to be valid out to about q5 = 1.2 and 
1-7 rad, respectively. The range of validity of the fourth approximation cannot 
be determined until g, is known, but it seems reasonable to extrapolate and 
assume it valid out to about 1.9rad. At this point figures 1 and 2 show that the 
transient solution is close to the steady state. Thus, the evolution time for the 
flow is of order at = 2rad. In  retrospect, this fact, not previously known, 
justifies the expansions of the type used in equations (31)-(34) and ensures that 
only a few terms need be computed. 

A very interesting feature of figure 2 is that within the range of validity of the 
third approximation (specifically, at about q5 = 1.5 rad) the torque decreases very 
slightly below the steady-state value. Also, within the assumed validity of the 
fourth approximation, the torque coefficient goes through a minimum. Thus, 
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there is a clear suggestion that the ultimate approach to the steady state is not 
monotonic, but very possibly oscillatory. This is discussed further in the next 
section. However, it explains the need, met in $ 3  of this paper, for a more 
accurate solution to the steady-state problem than Cochran’s solution. The 
amount of undershoot indicated in figure 2 is only about 2& yo, so errors of that 
order in the steady-state solution could eliminate it. The accurate steady-state 
solution revealed errors of that order in Cochran’s solution, but his value for the 
torque is essentially correct. Therefore, the undershoot phenomenon predicted 
here is believed to be real, not spurious. There is no corresponding overshoot 
indicated in figure 1. 

- 

- 

- 

Order of approximation - 

t 1 
0 

0 0.5 1 .o 1.5 2.0 2.5 
q5 = SZt (rad.) 

FIGURE 2 .  Non-dimensional torque ws angle of rotation. 

The results for the velocity field are given in table 3 where g,, g,, g,, g,, fl,fi, f3, 
h,, h,, h3 are tabulated as functions of 7 in steps of A7 = 0.1 from 7 = 0 to 7 = 2 .  
First note that each function is one-signed (the last two entries for g ,  are a measure 
of round-off error). Secondly, the sequences (gl, g,, g,, g,), (fi,fZ,f3), (hl,  h,, h3) are 
alternating sequences. Finally, if each function is represented by its largest 
numerical value, then the sequences consist of monotonically decreasing terms, 
and the rate of decrease is about one order of magnitude per step. These facts 
again show that, to the order calculated, the series expansions are very well 
behaved and can describe in considerable detail the non-steady flow throughout 
the transient period. 

Figures 3, 4, 5 show the growth in time of the three velocity profiles towards 
the steady-state profiles. In  these figures the abscissa variable is 

5 = z/nhJ*(oo) where 6*(m) = 1.27(v/!2)* 

is the steady-state boundary-layer displacement thickness. All curves on these 
figures utilize the most accurate approximation available (i.e. fourth approxima- 
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0.2 

0 
0 0.2 0.4 0 6  0.8 1-0 1.2 1.4 1-6 1 43 2.0 

5 = Zf?r!€S*(Co) 

FIGURE 3. Growth of the circumferential flow towards the von KBrmBn- 
Cochran steady-state profile. 

0.20 I I 1 1 1 1 1 1 1 1 

FIGURE 4. Growth of the radial flow towards the von K&rm&n-Cochran 
steady-state profile. 

tion for figure 3 and third for figures 4 and 5 ) .  The curves for q5 = 2 rad in figures 4 
and 5 are not really reliable since the third approximation has outlived its 
validity at  that time. They are included only to show that the predicted secondary 
flow profiles are nearly the same shape as the steady-state ones, and also to 
indicate that the secondary flow lags in its development behind the primary flow 
(which, apart from overshoot effects which are observable in figure 3, approaches 
its steady state after only about 1.7 rad). 
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The flow has threedistinct phases. Phase 1, whichlasts up toabout Qt = O-Brad, 
is characterized by a similar solution (the first terms in the expansions dominate). 
During this phase, growth in the boundary-layer displacement thickness is the 
only significant dynamical effect. The shapes of the velocity profiles remain 
essentially constant (provided we define the shapes by v/rQ, u/rQd2, w/(vQ)* d3, 
since d N @). For at between roughly 0.5 and 1-5rad (phase 2 ) ,  boundary-layer 
growth continues, though at a slower rate, and simultaneously, because of the 
growing importance of the non-linear convective acceleration, the velocity pro- 
files adjust in shape towards the steady-state profiles. Finally, a t  about Qt = 1-5, 

1 .0 I I I I I I 1 I I 1 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 1.6 1.8 2.0 

f = z/7&*( co) 

FIGURE 5. Growth of the axial flow towards the von Kkman- 
Cochran steady-state profile. 

the beginning of phase 3, the slope of the primary flow profile a t  the disk over- 
shoots the steady-state value by a very small amount, clearly indicating that a 
non-monotonic process (phase 3) must follow. Many more than the available 
four terms would be required in order to follow in detail the return to the steady 
state following overshoot. However, in analogy with the ' Greenspan-Howard 
problem' discussed below, it is surmised that the third phase consists of a small 
amplitude decaying oscillation, of frequency 2!2, about the steady state. 

6. Relationship to the ' Greenspan-Howard problem ' 
Greenspan & Howard (1963) have recently presented an interesting analysis 

of a rotating time-dependent flow to which the present problem is related. In  
their problem, a general axially symmetric closed container rotates about its 
axis of symmetry with an angular velocity a. The contained fluid is in uniform 
rotation at  the same angular velocity. At time t = 0 ,  the angular velocity of the 
container is impulsively changed by a small amount sQ. Their analysis describes 
in detail the return of the fluid to the new steady-state rigid-body rotation. 



798 Edward R. Benton 

As the simple prototype for the general problem, Greenspan & Howard con- 
sidered a closed container formed by two infinite parallel coaxial disks, separated 
by a distance 2L, which rotate in unison. They showed that the transient flow 
consists of three distinct phases. Phase 1, lasting up to QZt = O( l ) ,  is the establish- 
ment of a quasi-steady Ekman layer on each disk with an inviscid geostrophic 
region in between. During this period, there is essentially no interaction between 
the two layers. Consequently, this phase corresponds (apart from the difference 
in initial condition) to  the monotonic growth of the boundary layer in the present 
problem (our phases 1 and 2). Had Greenspan & Howard analysed their first 
phase in more detail (which was not their purpose) they probably would have 
found a subphase of similar flow followed by a subphase of non-similar flow. 

The second phase is the important one in the ‘Greenspan-Howard problem’, 
but it is absent in the single disk problem. During their phase 2 ,  which lasts up 
until t N L/(vQ)*, the angular momentum of the inviscid interior region increases 
(if B > 0) towards the new steady-state value. This ‘spin-up7 occurs not by 
viscous diffusion, but rather because of secondary flow associated with the Ekman 
layers and the geometrical constraint provided by the second disk. This phase has 
no analogue in the present problem because there is no second disk and there- 
fore no ‘spin-up’ to a new uniform rotation (our container is not closed). 

Their third phase lasts until t N L2/v.  It consists of the final viscous decay of 
inertial oscillations (at frequency 2Q) which are excited initially by the impulse. 
It is suggested that similar oscillations may be excited in the present problem 
within the fluid rotating in the boundary layer. However, in their paper Greenspan 
& Howard argue that these oscillations are collectively (as well as individually) 
unimportant, essentially because the combined amplitude is a t  most of order 
B-5 = (LzQ/v)-? (refer to their equations (3.9) and (3.10), and the paragraphs 
that follow, but note there are misprints in those equations). Quantitatively this 
is correct, but qualitatively it does not seem to be warranted. In  fact, Howard 
(1965, private communication) agrees with the present writer that the ultimate 
approach to the steady state may well be a small amplitude decaying oscillation 
about the steady state. This implies that there is overshoot (even though by a 
small amount) and that the inertial oscillations are of considerable qualitative 
importance, although quantitatively small. Clearly, whether or not the total 
solution (steady state, plus monotonic growth, plus inertial oscillations) over- 
shoots the steady state depends upon the ratio of the instantaneous oscillation 
amplitude to the monotonic growth term. It can easily be shown (appendix 1) 
that this ratio will certainly exceed 1 in Greenspan & Howard’s problem for 
times of an order greater than t = Q-lR$In R (and possibly sooner). This proves 
that there is actually overshoot in their problem. In the single disk case there is 
no Reynolds number to govern the amplitude of inertial oscillations so overshoot 
may be expected sooner (Greenspan & Howard point out that during the early 
phase of the motion the inertial oscillation term is comparable in magnitude to 
the other terms in the solution). In  any case, phase 3 of the present problem is 
believed to correspond to Greenspan & Howard’s third phase. However, this 
clearly needs further study. 
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Appendix 1. Dominance of inertial oscillations in the Greenspan- 
Howard problem 

It can be shown that after a finite time the inertial oscillation term in the 
Greenspan-Howard problem actually dominates the monotonic growth term, 
so that overshoot of the steady state is inevitable. In  our notation and in an 
inertial co-ordinate system, the correct version of equation (3.10) in Greenspan & 
Howard (1963) for the primary flow is 

v l + c  
- = - -  exp ( - R-*$) [ 1 - exp [ - R*( 1 - 121 /L ) ]  cos R$( 1 - IzI /L)]  
€?Q € 

where f:, is the nth positive roots of tan f: = 5, the Reynolds number is R = L2s1/v, 
and the z co-ordinate is + L on the top disk and - L on the bottom disk. In  this 
equation, the first term is the final steady-state uniform rotation. The second 
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term gives the monotonic growth of the Ekman layers, and the third term, the 
inertial oscillation at frequency 2SZ. 

While it is possible to work directly from this equation, it is somewhat simpler 
to consider the viscous torque on one disk, say the top one. This is proportional 
to (av/az),,,, which is given by 

If the last term here can be larger in magnitude than the first term on the right, 
then the viscous torque will overshoot the steady-state value. All terms in the 
summation here are positive, so it is sufficient to show that there is a value of q5 
such that R-lt! exp ( - f: R-lq5) > R* exp ( - R-9 q5), 

where f ,  $p. This is clearly satisfied if 

q5 > (1 - f :  R-I)-l Riln ( f i2RQ).  

Now since [; 19 and R is to be large, overshoot will certainly occur for values of 
!2t greater than $R& In R, and probably sooner. It may be noted that SZt = R8 In R 
lies within Greenspan & Howard’s second phase. 


